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Abstract: Large-scale mapping of forest biomass uses geospatial predictors such as climate, vegetation indices, soil property, and topography in order to alleviate the discontinuity of in-situ measurements in space and time. Here, we present an approach 
combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass (AGB) in forest stands is estimated by incorporating the Forest Inventory and Analysis 
(FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) approach can provide a valid relationship between tree geometry and 
local resource availability; and (b) The zeroth order approach (size-frequency distribution) can expand individual tree allometry into total AGB at the forest stand level. Two supplementary reference maps from the National Biomass and Carbon Dataset 
(NBCD) and U.S. Forest Service (USFS) were implemented to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictive power, and to potentially improve models using additional geospatial 
predictors such as more climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). 

I. Research Background 
¤ Large-scale mapping of forest biomass to quantify forest C sinks/sources. 
- Discontinuity of in-situ measurements in space & time; 
- Use of geospatial predictors such as climate, vegetation index, soil, & topography; 
¤ Recent approaches (e.g., machine learning & spatial statistics) perform well. 

III. Data 
¤ Inputs; 
- FIA for allometric info. (inventories in 1999 & 2009) 
- PRISM for annual precip. (climatological years 
1971–2000 & 1981–2010) 
¤ Evaluations; 
- FIA AGB (also for model training/test) 
- Two AGB maps from NBCD & USFS 
- Eco-regions across scales (subsection, ~25 km2; 
section, ~2500 km2; province, ~25000 km2) 

II. Model Framework 
¤ Total AGB in forest stands (AGBTOT)[1] = ∫ m(r) f(r) dr; here, r = stem radius. 
- Individual trees’ allometry, m(r) = cm

−1 r8/3, between r & AGB; 
- Size-frequency distribution of trees, f(r) = cn r−2, with varying size classes; 
- Assuming rmax >> r0 (smallest tree) in a forest stand, AGBTOT ≅ (3/5) cn cm

–1 rmax
5/3; 

¤ Mechanistic understanding using the ASRL[2] & zeroth-order[3] approaches. 

 

(1) Norm. const. of allometry, cm = [10 (2ζ π) κ1
 F ρ]–1; (unit: g–1cm8/3). 

(2) Norm. const. of size-frq. dist., cn = (4/5) QTOT
 κ2

–1 rmax
–(4/5); (unit: cm ha–1). 

- κ1, κ2, & ζ = empirical scaling for US forests[2]; ρ = wood spec. gravity (g cm−3); 
- Basal metabolic rate (QTOT in L day−1 ha–1) ≤ Qp = (γ Pinc

 Ae)ψ; here, Pinc = incoming 
precip. (L day−1 m−2); Ae = root area (m2 ha–1), & γ = absorption efficiency (≈ 1/3[2]); 
(3) rmax = (hmax/κ1)1/ζ /2; (unit: cm). 
- Based on an allometric scaling rule for tree geometry[2,4]; 
- Why hmax? For flexibility to use lidar/radar altimetry data in future studies; 

IV. Optimization & Sensitivity Analysis 
¤ Parametric optimization (F & ψ); 
- To minimize training errors against FIA AGB 
with higher R2 & Pearson’s r, but lower mean- 
absolute-error (MAE) & RMSE. 
- Samples in 12 groups with four tree species 
types × three annual precip. regimes 
¤ Sensitivity analysis; 
- To find empirically realistic extents & 
intervals of F & ψ (perturbing one, while 
keeping another). 
- 0.03 ≤ F ≤ 0.08; 0.95 ≤ ψ ≤ 1.30. 

VI. Intercomparisons of Modeled AGBs 
- Four standard comparisons[6] across spatial scales: (a) Data distribution, (b) Overall 
agreement, (c) Local mean, & (d) Variability in optimized ASRL & reference AGBs; 
- ASRL vs. FIA generally showed best correlations 
& spatial similarity throughout all scales; 
*Kolmogorov-Smirnov (KS) & Agreement Coefficient (AC) values 

 

V. Optimized ASRL Model AGB 
- Moderate predictive power: MAE = 43.6; RMSE = 66.5 ton/ha; R2 = 0.50 (Y2009) 
- Stable model performance with the independence between training & test data. 
- In general, underestimations in dry regions, while overestimations in wet regions. 

VII. Uncertainty Quantification 
¤ Error propagation for independent sources: AGBTOT = f(ρ, Pinc

ψ, Ae
ψ). 

- U(p) = {[Δρ(p)/ρ(p)]2 + [ψΔPinc(p)/Pinc(p)]2 + [ψSAe]2}1/2; here, p = individual sites; 

(a) spatial mismatches for FIA plots & 
PRISM pixels; 
(b) heterogeneity of species composition; 
(c) bias (0–80%) in effective root area (SAe); 
- Random errors (data quality) not considered; 
- Source (a) & (b) only ≤ 10% of uncertainty; 

 VIII. Future Improvements 
¤ Spatially contiguous maps of total forest AGB after alleviating limitations. 
(a) Additional geospatial predictors may be needed – e.g., evaporative fluxes, soil 
nutrients & properties; 
(b) Improved calibration of basal metabolic constants and exponents is required; 
(c) Explicit accounting of forest stand age structure is necessary; 
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Fig 1. Use of geospatial predictors in recent studies. Being highly predictive with less training errors, 
but biophysical mechanisms governing forest growth are often neglected. 

Fig 2. Model driven by stem radius of the largest tree (rmax) & two normalization constants (cm & cn). 
Two optimization parameters are tree shape factor (F) & root absorption exponent (ψ). 
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Fig 4. Study sites in 12 zones defined by tree  
species types & precip. regimes (Dry ≤ 900; 
Interm.; 1300 mm < Wet). 

Fig 5. Optimized ASRL AGB (Y2009). (a) Overall 
agreement with FIA AGB. (b) Density scatter plot. 
(c) Spatial distribution. (d) Relative errors. 

Fig 6. Two-fold cross validations for 
(a,b) Y1999 & (c,d) Y2009. Randomly 
divided training & test sets 

Fig 3. Reference AGBs. (a,b) FIA 
AGB Y1999 & Y2009. (c) NBCD 
AGB Y2000. (d) USFS AGB 
Y2003. 
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Fig 11. Quantified uncertainty (Y2009). (a) 
e.g., bias (20%) in SAe. (b) Five scenarios.  

Fig 7. Empirical Cumulative Distribution Function 
curves for ASRL, FIA, NBCD, & USFS AGB (Y2009).  
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Fig 8. Overall agreement (Geometric Mean Function 
Relationship) of ASRL vs. FIA, NBCD, & USFS AGB. 
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Fig 10. Local standard deviations in 
ASRL & reference AGBs  (Y2009).  
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Fig 9. 
Local 
mean 
difference 
of ASRL 
vs. FIA, 
NBCD, & 
USFS with 
99% 
confidence 
level 
(Y2009).  
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